π = σ υ ν − 1 ( − 1 ) ≃ 3 , 141592653589793238462643... {\displaystyle \pi =\sigma \upsilon \nu ^{-1}{\begin{pmatrix}-1\end{pmatrix}}\simeq 3,141592653589793238462643...}
e = lim n → ∞ ( 1 + 1 n ) n ≃ 2 , 718281828459045235360287... {\displaystyle e=\lim _{n\to \infty }{\begin{pmatrix}1+{\frac {1}{n}}\end{pmatrix}}^{n}\simeq 2,718281828459045235360287...}
2 = 2 1 2 ≃ 1 , 4142135623730950488... {\displaystyle {\sqrt {2}}=2^{\frac {1}{2}}\simeq 1,4142135623730950488...}
3 = 3 1 2 ≃ 1 , 7320508075688772935... {\displaystyle {\sqrt {3}}=3^{\frac {1}{2}}\simeq 1,7320508075688772935...}
5 = 5 1 2 ≃ 2 , 2360679774997896964... {\displaystyle {\sqrt {5}}=5^{\frac {1}{2}}\simeq 2,2360679774997896964...}
2 3 = 2 1 3 ≃ 1 , 259921050... {\displaystyle {\sqrt[{3}]{2}}=2^{\frac {1}{3}}\simeq 1,259921050...}
3 3 = 3 1 3 ≃ 1 , 442249570... {\displaystyle {\sqrt[{3}]{3}}=3^{\frac {1}{3}}\simeq 1,442249570...}
2 5 = 2 1 5 ≃ 1 , 148698355... {\displaystyle {\sqrt[{5}]{2}}=2^{\frac {1}{5}}\simeq 1,148698355...}
3 5 = 3 1 5 ≃ 1 , 245730940... {\displaystyle {\sqrt[{5}]{3}}=3^{\frac {1}{5}}\simeq 1,245730940...}
e π ≃ 23 , 140692632779269006... {\displaystyle e^{\pi }\simeq 23,140692632779269006...}
π e ≃ 22 , 45915771836104547342715... {\displaystyle \pi ^{\mbox{e}}\simeq 22,45915771836104547342715...}
e e ≃ 15 , 154262241479264190... {\displaystyle e^{\mbox{e}}\simeq 15,154262241479264190...}
l o g 10 2 = l n 2 l n 10 ≃ 0 , 3010299956639811952137389... {\displaystyle log_{10}2={\frac {ln2}{ln10}}\simeq 0,3010299956639811952137389...}
l o g 10 3 = l n 3 l n 10 ≃ 0 , 4771212547196624372950279... {\displaystyle log_{10}3={\frac {ln3}{ln10}}\simeq 0,4771212547196624372950279...}
l o g 10 e = l n e l n 10 = 1 l n 10 ≃ 0 , 43429448190325182765... {\displaystyle log_{10}e={\frac {lne}{ln10}}={\frac {1}{ln10}}\simeq 0,43429448190325182765...}
l o g 10 π = l n π l n 10 ≃ 0 , 4971498726941338543512683... {\displaystyle log_{10}\pi ={\frac {ln\pi }{ln10}}\simeq 0,4971498726941338543512683...}
l n 10 ≃ 2 , 302585092994045684017991... {\displaystyle ln10\simeq 2,302585092994045684017991...}
l n 2 ≃ 0 , 693147180559945309417232... {\displaystyle ln2\simeq 0,693147180559945309417232...}
l n 3 ≃ 1 , 098612288668109691395245... {\displaystyle ln3\simeq 1,098612288668109691395245...}
γ = lim n → ∞ ( n ∑ i = 1 1 n − l n n ) ≃ 0 , 577215664901532860606512... {\displaystyle \gamma =\lim _{n\to \infty }{\begin{pmatrix}{\begin{matrix}n\\\sum \\i=1\end{matrix}}{\frac {1}{n}}-lnn\end{pmatrix}}\simeq 0,577215664901532860606512...}
e γ ≃ 1 , 7810724179901979852... {\displaystyle e^{\gamma }\simeq 1,7810724179901979852...}
e = e 1 2 ≃ 1 , 6487212707001281468... {\displaystyle {\sqrt {e}}=e^{\frac {1}{2}}\simeq 1,6487212707001281468...}
π = π 1 2 = Γ ( 1 2 ) ≃ 1 , 772453850905516027298167... {\displaystyle {\sqrt {\pi }}=\pi ^{\frac {1}{2}}=\Gamma {\begin{pmatrix}{\frac {1}{2}}\end{pmatrix}}\simeq 1,772453850905516027298167...}
Γ ( 1 3 ) ≃ 2 , 678938534707748... {\displaystyle \Gamma {\begin{pmatrix}{\frac {1}{3}}\end{pmatrix}}\simeq 2,678938534707748...}
Γ ( 1 4 ) ≃ 3 , 625609908221908... {\displaystyle \Gamma {\begin{pmatrix}{\frac {1}{4}}\end{pmatrix}}\simeq 3,625609908221908...}
1 r a d = 180 o π ≃ 57 , 29577951308232... o {\displaystyle 1\;rad={\frac {180^{o}}{\pi }}\simeq 57,29577951308232...^{o}}
1 o = π 180 r a d ≃ 0 , 0174532925199432957... r a d {\displaystyle 1^{o}={\frac {\pi }{180}}\;rad\simeq 0,0174532925199432957...\;rad}
lim n → ∞ ( ∏ i = 0 n α i ) 1 n = K 0 = ∏ r = 1 ∞ ( 1 + 1 r ( r + 2 ) ) l o g 2 r ≃ 2 , 6854520010... {\displaystyle \lim _{n\to \infty }(\prod _{i=0}^{n}{\alpha }_{i})^{1 \over n}=K_{0}=\prod _{r=1}^{\infty }(1+{1 \over r(r+2)})^{l}og_{2}r\simeq 2,6854520010...}